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We present a comparison of the performance of vortex and pseudospectral methods
in two reference flows: a homogeneous turbulent flow at low Reynolds number
and a vortex reconnection case at a moderate Reynolds number. The results should
contribute to a better understanding of the accuracy of vortex methods in both resolved
and underresolved simulations.c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Spectral and vortex methods are numerical methods of a seemingly very different nature.
On the one hand, spectral methods can be considered as a reference technique, highly
accurate but limited to very specific geometries, at least for straightforward implementation.
On the other hand, particle methods—vortex methods in the case of incompressible flows—
are in general viewed as numericalmodels, merely able to give qualitative informations on
flows, but naturally adapted to complex geometries.

However, developments of new tools in the last decade, concerning in particular the
treatment of diffusion and boundary conditions, in many aspects, bring particle methods
closer to conventional grid-based methods. Systematic comparisons with centered finite-
difference schemes for a variety of two-dimensional flows (see Ref. [9]) have demonstrated
that vortex methods compare well to nondissipative schemes in terms of accuracy. At the
same time, vortex methods retain their adaptivity and robustness. They are free of any
convection-related stability conditions, which permits use of large time steps. In many
cases, this can lead, for a given accuracy, to substantial savings in computational time over
grid-based solvers.
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This paper aims at achieving new quantitative information about the vortex method
accuracy in two three-dimensional configurations, by means of systematic confrontation
with pseudospectral methods. Our goal is not to undertake a convergence study for either
method, but rather to address the following question: for a given flow and grid-size, what
accuracy can be expected from these methods?

The first test case deals with the classical direct numerical simulation (DNS) of homoge-
neous isotropic turbulence. The second one is the instability generated by two antiparallel
vortex tubes. In the later case, our simulations were underresolved, as it is often the case
in practice, and we wanted to investigate the subgrid behavior of vortex methods. We thus
compared vortex methods with pseudospectral methods which either were dealiased or
involved a subgrid dissipation model.

2. RESULTS

We first briefly sketch the numerical methods considered. We then describe the results
of the simulations for the two flows under consideration.

2.1. The Spectral and Vortex Codes

We have focused on a geometry where both methods were straightforward to imple-
ment, namely a periodic box. The pseudospectral code used in our simulations is rather
classical. Derivatives are computed in the Fourier space. The nonlinear convective terms
are expressed in their rotational form and are computed in the physical space, using Fast
Fourier Transforms (FFTs). Time-stepping is performed using a third-order Runge–Kutta
scheme. When appropriate, dealiasing was performed using the two-thirds rule [1].

The vortex code operates on the velocity–vorticity formulation of the Navier–Stokes
equations. It is a time-splitting algorithm alternating advection and diffusion steps. The
advection step consists of tracking particles of vorticity and updating their circulation to
take into account the stretching. To compute the velocity field, two strategies are available
for vortex methods. The first one is based on the Biot–Savart law. It requires the use of
fast multipole expansions for N-body solvers. To the best of our knowledge, even the latest
implementations of these solvers in three dimensions lead to computational costs which
are several orders of magnitude larger than grid-based Poisson solvers. We thus elected the
second strategy, which relies on the use of a Poisson solver on an underlying Eulerian grid.
In this class of so-called vortex-in-cell (VIC) methods, the advection step goes through the
following sequence of operations:

• Particle vorticity is interpolated to the grid.
• The stream function is calculated on the grid by a FFT-based Poisson solver.
• Velocity and stretching is computed by fourth-order centered finite difference on the

grid, then interpolated back to the particle locations.
• Particles are pushed and their circulations are updated.

This sequence is repeated in a second-order Runge–Kutta scheme. This is essentially the
VIC method of Christiansen [2], except for the interpolation kernel, which in our case is
a third-order piecewise cubic spline. More precisely, the interpolation of vorticity onto the
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grid is given by the formula

ωi = 1

13

∑
p

ΓpΦ
(

xi − xp

1

)
,

where1 is the grid size andxi , xp, ωi , andΓp are, respectively, the grid points, particle
locations, grid vorticity and particle circulations. The kernelΦ is obtained by tensor product
of the following one-dimensional function:

φ(x) =
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1
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1− 5x2

2 + 3|x|3
2 if |x| ≤ 1.

At the end of the advection step particles are remeshed on a regular lattice through the
same interpolation kernel. It should be noted that the choice of this nondissipative kernel
plays an important role in the accuracy of the overall algorithm. In all our calculations
the particle spacing is equal to the grid size, and the particles and grid points are laid on
staggered grids. The diffusion is finally achieved by redistributing vorticity among nearby
particles, through the finite-difference-like formula

dΓp

dt
= ν1−2
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)
,

where

3(x) =
{

6
17

1
1+|x|2 if |x|< 2,

0 if |x| ≥2.

Note that this results in a 27-point formula, which is in the spirit of the so-called particle
strength exchange scheme [5]. However the particle remeshing prior to the diffusion step
avoids quadrature-type error, which is in general associated with these diffusion solvers.
Implementation details and numerical analysis of the various steps of the algorithm can be
found in Refs. [5, 9]. It should be noted that the grid calculation of the velocity on the grid
allows the numerical cost of the algorithm to be kept at a reasonable level. The Lagrangian
character of the method is maintained in the transport of the particles and, as a result, the
time step remains independent of the grid size. The time step is chosen to be proportional
to min (‖ω‖−1, ‖∇ : u‖−1), which is the time scale over which the particles are subject to
strain and rotation.

2.2. DNS of Isotropic Turbulence (Run 1)

In this experiment, a DNS of freely decaying isotropic turbulence is performed (see,
for example, Ref. [7]). The initial velocity field has a Gaussian distribution and zero
mean, with a kinetic-energy spectrumE(k, 0) ∝ k4 exp[− 2k2

k2
p

], where kp = 4. Time is

expressed in terms of large-eddy turnover time unitsL0/u0, whereL0 is the initial in-
tegral scale andu2

0 = 2
3〈u(0)2〉. The Reynolds number based on the Taylor microscale is

initially 98 and decreases to 26 att = 8. It should be noted that the duration of these
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simulations exceeds the establishment of the self-similar cascade, which approximately
occurs att = 4.5 [6]. Calculations were performed in the periodic box [0, 2π ]3 with
1283 collocation points or particles. As a result, 64 Fourier modes are considered in
each direction of Fourier space, betweenkmin = 1 andkmax= 64. It was checked that
at each instant the resolution requirementkmax/kd ≥ 1.3 was fulfilled, wherekd denotes
the Kolmogorov dissipative wavenumber. Moreover, since in this case exponential decay
of spectra started not later than wavenumber2

3kmax, the dealiasing threshold for spatial
resolution (2kmax)

3, the pseudospectral simulation was not dealiased. In other words, for
the given grid resolution the spectral results can reasonably be considered as reference
results.

Figure 1 shows the time evolution of the energy spectra obtained by the vortex and spec-
tral methods. The difference in the tails of the spectra results in a less pronounced peak in
the enstrophy curve for the vortex method (Fig. 2). Further comparisons indicate that the
truncation errors induced in remeshing the particles are primarily responsible for the enstro-
phy deficit in the vortex method (see Ref. [11] for extensive comparisons; Refs. [4, 11] can
be downloaded from www.lmc.imag.fr/lmc-edp/Georges-Henri.Cottet/). All other statistics
usually computed for this type of flow are otherwise very close. Figure 3 shows the evolution
of the skewness factor of−∂u1/∂x1, which is known to be a nondimensional measure of
the kinetic-energy transfer. The agreement is rather good, in particular in the early stages of
the computations, when the skewness undergoes a rapid variation. The probability distribu-
tions of the velocity and pressure (Fig. 4) are also in excellent agreement. By inspecting 3D
visualizations of the vorticity modulus at different times, it was also checked that both sim-
ulations produce coherent structures in qualitative agreement. Figure 5 shows the vorticity
isosurfaces corresponding to about 40% of the maximum vorticity at five turnover times.
From these results one may recognize that the vortex-method simulation not only repro-
duces the statistical properties of the pseudospectral run, it yields deterministic agreement
as well.

FIG. 1. Time evolution of the kinetic-energy spectra for run 1. Spectra are shown at timet = 2, 6, and 10 in
large-eddy turnover time units.
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FIG. 2. Temporal evolution of the enstrophy for run 1.

2.3. Reconnection Case (Run 2)

We now turn to a flow which exhibits in a very clear and localized way some typical
three-dimensional features (vorticity increase and topology change, production of small
scales). The initial condition consists of two antiparallel vortex tubes subject to a sinusoidal
perturbation. We have chosen the same initial condition as in Ref. [10]. More precisely, the

FIG. 3. Skewness factor of−∂u1/∂x1 for run 1.



SPECTRAL AND VORTEX METHODS IN 3D FLOWS 707

FIG. 4. Pdf of−∂u1/∂x1 (top) andp (bottom) for run 1.

vortex core inside each tube is given by the formula

ω(r ) =
{

0 if r > 2/3,

−2[1− f (3r/2)] if r ≤ 2/3,

where

f (r ) = exp

[
− K

r
exp

1

r − 1

]
; K = 0.5 exp(2) ln(2).

The tubes’ centerlines are cosine waves of amplitude 0.5 at an angle ofπ/3 and a distance
of 1.73 in a periodic [0, 2π ]3 box.
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FIG. 5. Isosurface of vorticity magnitude att = 5 in large-eddy turnover time units for run 1. (Top) Spectral
method, (bottom) vortex method.



SPECTRAL AND VORTEX METHODS IN 3D FLOWS 709

Reference [10] contains a precise account of the reconnection phenomena that take place
for this flow. For Reynolds numbers up to 3500, a pseudospectral method is used with a
refined collocation grid near the reconnection plane, giving a local resolution corresponding
to a uniform grid of 6403. We were here interested in the effect of underresolution on the
results of the simulations and have run the spectral and vortex codes on 1203 and 1803

uniform grids for a Reynolds number of 3500.
It is well-known that underresolved spectral simulations exhibit unphysical accumulation

of energy in the tail of the spectrum. The classical cure for that is to use dealiasing techniques
and/or complement molecular viscosity by subgrid scale models which enforce dissipation
of energy at high wavenumbers. Note that in this case the flow is laminar and not turbulent
and it is more appropriate to see subgrid models as artificial viscosity techniques. Figure 6
shows the level curves of the vorticity at nondimensionalized timet = 2 (reconnection time
is aboutt = 1.5) for the 1803 vortex simulation, the 1203 vortex simulation, and two different
implementations of the 1203 spectral code: one with dealiasing and one with a Smagorinsky
subgrid dissipation model with a coefficient value ofCS = 0.23. These plots indicate that
in all cases the spectral code produces spurious vorticity. As for the vortex code, it gives
reasonably well-converged results for the scales that are resolved. In Fig. 7, we show the

FIG. 6. Cross section of the vorticity after reconnection of the symmetry plane perpendicular to the tubes
for run 2. (a) Vortex method,N = 180; (b) vortex method,N = 120; (c) dealiased spectral method,N = 120;
(d) Smagorinsky spectral method,N = 120.
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FIG. 7. Energy spectra in the direction perpendicular to the reconnection plane for run 2 at timet = 2.

spectra in the direction perpendicular to the reconnection plane (that is, ifx is this direction,
kx →

∑
ky,kz
|û(kx, ky, kz)|2). As could be expected, the spurious vortices observed in the

spectral results translate into an accumulation of energy in the highest wavenumbers. More
surprising, the vortex scheme avoids this problem, but not at the expense of an undesired
dissipation: a comparison of the spectra with the more resolved calculation shows that
it fairly resolves the smallest scales. These observations are confirmed by inspecting the
enstrophy curve in Fig. 8. The curve corresponding to the vortex run actually shows a slight

FIG. 8. Enstrophy curves for run 2.
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overestimation of the enstrophy, while the dealiased spectral method exhibits an accelerated
decay of the enstrophy passed the reconnection time, probably due to the intense dissipation
taking place in the spurious small scales produced in the course of the calculation. As for
the Smagorinsky model, it is at the same time too dissipative in the large scales and not
enough in the small scales.

3. CONCLUSIONS

We have presented a comparison of the results obtained by spectral and vortex methods
for two flows of interest. In the context of direct numerical simulations, that is when all
scales in the inertial range and in a portion of the dissipation range are well resolved, the
spectral method is more accurate in the highest wavenumbers. However, the accuracy of
the vortex method in the large and intermediate scales is good enough to yield acceptable
statistics. In the underresolved case, vortex methods appear to behave as accurate LES
models in the sense that they avoid accumulation of energy at the end of the spectrum,
without excessive dissipation in the resolved scales (the particular role played by particle
methods in the context of large-eddy simulations can indeed be understood by numerical
analysis, see Refs. [3–5]).

Another important issue that must be addressed when comparing two numerical methods
is their computational cost. The flows that we have considered here were chosen in view of
their typical 3D features and the fact that both methods were straightforward to implement
in a periodic geometry. They correspond to boundary conditions for which spectral methods
are obviously optimally fast, while it is clear that vortex methods are better suited to wake-
type flows in which vorticity is more localized. When particles completely fill the domain
(which is the case in run 1), a typical CPU time for the vortex code is 40 s for one iteration on
a 1283 grid (recall that grid and particle spacing are equal), compared to about 20 s for our
spectral code (on an Alpha single-processor workstation). The computational overhead in
the vortex method results from the interpolation formulas that are involved at several stages
of the algorithm. For run 1, at this grid size results were converged for the vortex method
for a time step1t = ‖ω‖−1 and for the spectral method for a CFL number of 1. This gave
at the beginning of the simulations a time step about five times larger for the vortex method
than for the spectral method. At time 4, when vorticity reaches its peak value, time steps
were roughly equal. Overall, this led to similar computational costs for the two codes (8000
and 10,000 s, respectively, for the vortex and spectral codes, up tot = 4). For run 2, to
obtain converged results, at the given resolution, the time step of the vortex code had to be
reduced to1t = 0.25‖ω‖−1, and the overall CPU time for the vortex code was twice that
of the spectral code.

Although a complete discussion of implementation issues for both methods is beyond
the scope of this paper, let us also mention that in many practical situations, the treatment of
boundaries may affect these figures. In a spectral code, no-slip boundary conditions often
dictate the use of a Legendre-type method, for which FFTs are not available, which sub-
stantially increases the cost of the method. In a vortex method, no-slip boundary conditions
are enforced by vorticity flux-type algorithms [5], which concern a few layers of particles
around the boundary and thus only marginally add to the overall cost of the method.

Given a flow and an affordable grid size, accuracy and cost considerations must be
carefully balanced when it comes to the choice of a particular method and we hope that the
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present comparisons may help to evaluate the strengths and limitations of vortex methods
for the simulations of three-dimensional complex flows.
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